
Klaus Wachtel
Institut für Neutestamentliche Textforschung (INTF)
http://egora.uni-muenster.de/intf/
Coherence-Based Genealogical Method (CBGM)

• Aim: Reconstruction of the initial text, the text from which the manuscript tradition started
• Method: Trace coherent structures in the textual tradition and draw conclusions about the genealogy of variants and the witnesses containing them
• Pre-genealogical Coherence: Evaluation of agreements and differences of compared texts
• Genealogical Coherence: Evaluation of priority and posteriority of variants contained in compared texts
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
3) Tabulate Pre-Genealogical Coherence
Pre-Genealogical Coherence: Cluster 429

MS 429, No Filter, All Available Chapters, Average Agreement: 88.4%
429 - MT 88.43%
1) 206 - 98.4% (4101/4166)
2) 522 - 96.7% (7059/7300)
3) 1490 - 95.4% (7075/7416)
4) 2200 - 95.2% (6919/7265)
5) 630 - 94.7% (6902/7285)
6) 1891 - 94.4% (6995/7409)
7) 1509 - 93.7% (6953/7419)
8) 1739 - 93.7% (6759/7214)
9) 945 - 93.1% (6914/7427)
10) 2298 - 93.1% (6913/7425)
11) 1704 - 93.0% (6874/7391)
12) 1831 - 93.0% (4589/4933)
13) 35 - 91.9% (6748/7344)
14) 1751 - 91.6% (6579/7186)
15) 323 - 91.2% (6670/7316)
16) 636 - 90.9% (6701/7371)
17) 18 - 90.8% (6721/7401)
18) 1251 - 90.5% (6697/7401)
19) 642 - 90.3% (5585/6184)
20) 1609 - 90.2% (6509/7219)
Pre-Genealogical Coherence: Acts 11:8/12-18c

Acts 11:8/12-18 - c
No Filter, Incl. Majority Text, Up to 30 Relatives, Scope: All Chapters

429 - MT 88.43%
1 - 1) 522 - 96.7% (7059/7300) - c
2 - 2) 1490 - 95.4% (7075/7416) - c
3 - 3) 2200 - 95.2% (6919/7265) - c
4 - 4) 630 - 94.7% (6902/7285) - c
5 - 5) 1891 - 94.4% (6995/7409) - c
6 - 6) 1509 - 93.7% (6953/7419) - f (M)
7 - 7) 1739 - 93.7% (6759/7214) - c
8 - 8) 945 - 93.1% (6914/7427) - h
9 - 9) 2298 - 93.1% (6913/7425) - c
10 - 10) 1704 - 93.0% (6874/7391) - h
11 - 11) 35 - 91.9% (6748/7344) - f (M)
12 - 12) 1751 - 91.6% (6579/7186) - c
13 - 13) 323 - 91.2% (6670/7316) - d
14 - 14) 636 - 90.9% (6701/7371) - c
15 - 15) 18 - 90.8% (6721/7401) - f (M)
16 - 16) 1251 - 90.5% (6697/7401) - f (M)
17 - 17) 642 - 90.3% (5585/6184) - f (M)
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
3) Tabulate Pre-Genealogical Coherence
4) Edit the local stemmata
Local Stemmata

Local stemmata show the genealogical relationships between variants.

A hypothesis about genealogical relationships between the states of a text as preserved in the manuscripts has to rest upon the genealogical relationships between the variants they exhibit. Therefore a systematic assessment of the genealogy of these variants (displayed as local stemmata) is a necessary requirement for examining the genealogy of textual witnesses.
Local Stemmata of Acts 11:8/12-18

Diagram:

- Act 11:8/12-18
- a1
 - f
 - j
 - g
 - h1
 - d
 - c1
 - e
 - b
 - a2
 - c2
 - h2
Local Stemmata of Acts 11:8/12-18 in tabular form

<table>
<thead>
<tr>
<th>VID</th>
<th>VIDN</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a1</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a2</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>c1</td>
<td>a1</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>c2</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>c1</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>a1</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>h1</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>h2</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>j</td>
<td>f</td>
<td></td>
</tr>
</tbody>
</table>
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
3) Tabulate Pre-Genealogical Coherence
4) Edit the local stemmata
5) Tabulate Genealogical Coherence
Potential Ancestors of 35

Data Source: Cath. Letters (excl. small fragments and extracts)

<table>
<thead>
<tr>
<th>W2</th>
<th>NR</th>
<th>D</th>
<th>PERC1</th>
<th>EQ</th>
<th>PASS</th>
<th>W1<W2</th>
<th>W1>W2</th>
<th>UNCL</th>
<th>NOREL</th>
</tr>
</thead>
<tbody>
<tr>
<td>617</td>
<td>1</td>
<td>25</td>
<td>95.995</td>
<td>2924</td>
<td>3046</td>
<td>56</td>
<td>46</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>424</td>
<td>2</td>
<td>29</td>
<td>95.988</td>
<td>2919</td>
<td>3041</td>
<td>51</td>
<td>45</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>468</td>
<td>3</td>
<td>30</td>
<td>95.588</td>
<td>2903</td>
<td>3037</td>
<td>57</td>
<td>49</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>28</td>
<td>92.263</td>
<td>2695</td>
<td>2921</td>
<td>212</td>
<td>0</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>025</td>
<td>5</td>
<td>30</td>
<td>91.160</td>
<td>2344</td>
<td>2681</td>
<td>99</td>
<td>84</td>
<td>46</td>
<td>8</td>
</tr>
<tr>
<td>323</td>
<td>0</td>
<td>35</td>
<td>89.638</td>
<td>2725</td>
<td>3040</td>
<td>111</td>
<td>111</td>
<td>76</td>
<td>17</td>
</tr>
<tr>
<td>1739</td>
<td>6</td>
<td>31</td>
<td>87.853</td>
<td>2676</td>
<td>3046</td>
<td>158</td>
<td>115</td>
<td>77</td>
<td>20</td>
</tr>
<tr>
<td>03</td>
<td>7</td>
<td>33</td>
<td>87.272</td>
<td>2633</td>
<td>3017</td>
<td>201</td>
<td>78</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>04</td>
<td>8</td>
<td>31</td>
<td>87.262</td>
<td>1836</td>
<td>2104</td>
<td>103</td>
<td>93</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>P74</td>
<td>0</td>
<td>31</td>
<td>>82.493</td>
<td>278</td>
<td>337</td>
<td>27</td>
<td>22</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Version 1.0
Textual Flow Diagram for Acts 11:8/12-18a
Textual Flow Diagram for Acts 11:8/12-18c
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
3) Tabulate Pre-Genealogical Coherence
4) Edit the local stemmata
5) Tabulate Genealogical Coherence
6) Review the local stemmata
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
3) Tabulate Pre-Genealogical Coherence
4) Edit the local stemmata
5) Tabulate Genealogical Coherence
6) Review the local stemmata
7) Feed revised textual assessments into the genealogical coherence tables
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
3) Tabulate Pre-Genealogical Coherence
4) Edit the local stemmata
5) Tabulate Genealogical Coherence
6) Review the local stemmata
7) Feed revised textual assessments into the genealogical coherence tables
8) Repeat steps 6 and 7 as often as appropriate
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
3) Tabulate Pre-Genealogical Coherence
4) Edit the local stemmata
5) Tabulate Genealogical Coherence
6) Review the local stemmata
7) Feed revised textual assessments into the genealogical coherence tables
8) Repeat steps 6 and 7 as often as appropriate
9) Define an optimal substemma for each witness
Optimal Substemma of 35
The CBGM Workflow

1) Transcribe the states of text preserved in the manuscripts.
2) Produce an apparatus of variants, purge the CBGM input from orthographical idiosyncrasies and scribal errors.
3) Tabulate Pre-Genealogical Coherence
4) Edit the local stemmata
5) Tabulate Genealogical Coherence
6) Review the local stemmata
7) Feed revised textual assessments into the genealogical coherence tables
8) Repeat steps 6 and 7 as often as appropriate
9) Define an optimal substemma for each witness
10) Integrate the substemmata into a global stemma
The over-all view — a stemma?

Traditional stemma of manuscripts (not displaying contamination – one ancestor per descendant)

Stemma of texts (allowing for more than one ancestor per descendant)
The over-all view – a stemma?

traditional stemma of manuscripts
(not displaying contamination – one ancestor per descendant)

stemma of texts
(allowing for multiple ancestors)

617 468 025 1739

35
The iterative process

- Internal criteria
 - Knowledge and preconceptions
 - Pre-genealogical coherence

- Local stemmata of variants
 - Genealogical coherence
 - Better knowledge

- Revision of local stemmata
 - Better knowledge
 - Genealogical coherence
 - Global stemma