Digital Preservation and Archiving

Gunter Vasold & Johannes Stigler

Center for Information Modelling – Austrian Centre for Digital Humanities
University Graz

Borås, February 2015
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-09:45</td>
<td>Thinking sustainably in using computers (Gunter)</td>
</tr>
<tr>
<td>09:45-10:30</td>
<td>Digital preservation: Basics (Johannes)</td>
</tr>
<tr>
<td>10:30-10:45</td>
<td>Coffee break</td>
</tr>
<tr>
<td>10:45-12:00</td>
<td>Digital preservation: Theory and Practice (Johannes)</td>
</tr>
<tr>
<td>12:00-13:30</td>
<td>Lunch break</td>
</tr>
<tr>
<td>13:30-14:30</td>
<td>Revision control systems in creating digital editions (Gunter)</td>
</tr>
<tr>
<td>14:30-14:45</td>
<td>Coffee break</td>
</tr>
<tr>
<td>14:45-16:00</td>
<td>Digital preservation: Research and Practice (Elena)</td>
</tr>
</tbody>
</table>
Agenda

1. Basics

2. OAIS – Open Archival Information System Reference Model
 - Basics
 - Data Model
 - Function Model

3. PREMIS – Preservation Metadata: Implementation Strategies

4. FEDORA – An Exemplary Implementation of OAIS
What is Digital Preservation?

A first approach

- Digital preservation begins with generating data
- Digital archiving is more than bitstream preservation
- Long-term preservation includes long-term availability
- Not only a technical, but an institutional infrastructure is required
- Digital preservation needs data curation
What is a Digital Archive?

A Repository provides ...

- direct access to individual information objects or information collections via a Persistent Identifier
- support of standardized protocols for data exchange and metadata harvesting, e.g. OAI-PMH etc.
- support of standardized programming languages for representation workflows
- version management strategies for datastreams
- a converter to generate long-term stable archive formats
- knowledge about life cycles of all objects
- a rights management system to prevent unauthorized access to informations objects
What is a Digital Archive?

Information objects ...
What is a Digital Archive?

Information objects ...

- Shows the object content in different views
 - http://glossa.uni-graz.at/o:dixit.505
- Shows the object content in different views
 - http://glossa.uni-graz.at/o:dixit.505/sdef:dfgMETS/get
- Shows the object content in different views
 - http://glossa.uni-graz.at/o:dixit.505/sdef:TEI/get
- Shows the datastreams list for the object
 - http://glossa.uni-graz.at/archive/objects/o:dixit.505/datastreams
- Shows the methods list for the object
 - http://glossa.uni-graz.at/archive/objects/o:dixit.505/methods
What is a Digital Archive?

Persistent Identifier

- A persistent identifier (PI) is a long-lasting reference to a digital object
- Persistent identifier conventions and systems:
 - Handle Systems
 - Digital Object Identifiers (DOIs)
 - Archival Resource Keys (ARKs)
 - Persistent Uniform Resource Locators (PURLs)
 - Uniform Resource Names (URNs)
 - Extensible Resource Identifiers (XRIs)
What is a Digital Archive?

Handle System

- The Handle System is a technology specification for assigning, managing, and resolving persistent identifiers for digital objects.
- The system is designed to be scalable to very large numbers of entities.
- The Handle System web site provides a series of implementation tools:
 - Implementation of the Handle System consists of Local Handle Services that store specific handles.
 - The Global Handle Registry is a unique Local Handle Service which stores information on the prefixes (also known as naming authorities) within the Handle System.
What is a Digital Archive?

Handle System

An id string ...

- is not based on any changeable attributes of the entity (location, ownership, or any other attribute that may change without changing the reference identity)
- is opaque (preferably a plain number: a well known pattern invites assumptions that may be misleading, and meaningful semantics may not translate across languages and may cause trademark conflicts)
- is unique within the system (to avoid collisions and referential uncertainty)
- http://hdl.handle.net/\textit{handle_prefix}/\textit{identifier_string}
- hdl:\textit{handle_prefix}/\textit{identifier_string} (with installed browser plugin)
- e.g. http://hdl.handle.net/11471/505.20.779
What is a Digital Archive?

Standardized protocols for data exchange and metadata harvesting

- The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is a low-barrier mechanism for repository interoperability
- Data Providers are repositories that expose structured metadata via OAI-PMH
- Service Providers then make OAI-PMH service request to harvest that metadata
- OAI-PMH is a set of six verbs or services that are invoked within HTTP
 - Archival Metadata
 - http://gams.uni-graz.at/oaiprovider?verb=Identify
 - http://gams.uni-graz.at/oaiprovider?verb=ListMetadataFormats
 - Harvesting verbs
 - http://gams.uni-graz.at/oaiprovider/?verb=GetRecord&metadataPrefix=oai_europeana&identifier=hdl:11471/505.20.779
 - http://gams.uni-graz.at/oaiprovider?verb=ListIdentifiers&metadataPrefix=oai_europeana
 - http://gams.uni-graz.at/oaiprovider?verb=ListRecords&metadataPrefix=oai_europeana
 - http://gams.uni-graz.at/oaiprovider?verb=ListSets
What is a Digital Archive?

Excursus: Standardized representation workflows – Extensible Stylesheet Language

- XSL Transformation (XSLT): An XML programming language for transforming XML documents
- XSL Formatting Objects (XSL-FO): An XML language for specifying the visual formatting of an XML document
- XML Path Language (XPath): A non-XML query language used by XSLT, and also available for use in non-XSLT contexts, for addressing the parts of an XML document
- Parser (Saxon, Xerces) are the runtime environment for XSLT
What is a Digital Archive?

Excursus: Standardized programming language – XSLT Transformation

- The XSLT processor takes one or more XML source documents, plus one or more XSLT stylesheets, and processes them to produce an output document.
- In contrast to widely-implemented imperative programming languages like C, XSLT is declarative.
- An XSLT program consists of template rules, defining input output scenarios.
- Template rules only define how to handle a node matching a particular XPath-like pattern.
- The basic processing paradigm is pattern matching.
What is a Digital Archive?

Excursus: Standardized programming language – XSLT Transformation
What is a Digital Archive?

Excursus: XSLT Transformation – A XML document

```xml
<menu-card>
  <item>Mejillones a la Copita</item>
  <item>Bistec al Pimiento</item>
  <item>Gambas al Pil Pil</item>
  <item>Bleak Roe</item>
  <item>Bruschetta de Salmon</item>
  <item>Vol au Vent</item>
  <item>Pata Negra Bellota</item>
  <item>Queso de Cabra</item>
  <item>Mejillones Gratinados</item>
  <item>...</item>
</menu-card>
```
What is a Digital Archive?

Excursus: XSLT Transformation – A XSLT Stylesheet

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
  <xsl:template match="menu-card">
    <html>
      <head><title/></head>
      <body>
        <h1>LaCopita Menu Card</h1>
        <ol>
          <xsl:apply-templates select="item"/>
        </ol>
      </body>
    </html>
  </xsl:template>

  <xsl:template match="item">
    <li>
      <xsl:value-of select="."/>
    </li>
  </xsl:template>

</xsl:stylesheet>
```
What is a Digital Archive?

Excursus: XSLT Transformation – A HTML result

```html
<html>
<head>
  <title>LaCopita Menu Card</title>
</head>
<body>
  <h1>LaCopita Menu Card</h1>
  <ol>
    <li>Mlijahones a la Copita</li>
    <li>Bistec al Pimiento</li>
    <li>Gambas al Pil Pil</li>
    <li>Bleak Roe</li>
    <li>Bruschetta de Salmon</li>
    <li>Vol au Vent</li>
    <li>Pata Negra Bellota</li>
    <li>Queso de Cabra</li>
    <li>Mlijahones Gratinados</li>
    <li>...</li>
  </ol>
</body>
</html>
```
In 2000 the Research Libraries Group (RLG) and Online Computer Library Center (OCLC) discussed how both organizations could build an infrastructure for purposes of archiving digital objects.

The resulting model guides you through building an archival information system.
OAIS – Open Archival Information System Reference Model

Defines a long-term preservation terminology for

- Architectures and Operations
- Preservation strategies and techniques
- A data model

Provides ...

- A framework for an increased awareness of concepts needed for long term preservation
- A framework for describing and comparing architectures and operations of archives
- A basis for comparing data models of digital information preserved by archives
Roles

- Producer – A data provider
- Administrator – A data manager
- Consumer – A data retriever

Important functions

- Ingest – Submit data to system
- Store – Preserve data in system
- Access – Retrieve data from system
Roles and their responsibilities

- **Producer**
 - Person(s) or client system(s), who provide the information to be preserved
 - Ingest digital resource to system

- **Administrator**
 - Person(s) or client system(s), who manage and set the overall policy of the OAIS
 - Monitor, verify digital resource, do preservation planning, migrate digital resource, and etc.

- **Consumer**
 - Person(s) or client system(s), who interact with the OAIS system and services
 - Search and access digital resource in repository
Data Model

- Preserved data in the system needs to be wrapped in a package
- Owing to the three important functions of OAIS (Ingest, Store, and Access), packages of preserved data are transformed into three types
 - Submission Information Package
 - Archival Information Package
 - Dissemination Information Package
OAIS – Open Archival Information System Reference Model

Data Model

- **SIP – Submission Information Package**
 - A form of package that is suitable for ingest to the system by the producer
 - Majorly, SIP contains Content Info and PDI

- **AIP – Archival Information Package**
 - A form of package that is suitable to being stored in the system

- **DIP – Dissemination Information Package**
 - A form of package that is suitable for dissemination to consumer
 - AIP is transformed to DIP for sharing purpose
PDI – Preservation Description Information

- What is needed to preserve the Content Information
 - Provenance
 - To record why, where and how the digital resource was born
 - Including software and environment that created it
 - Context
 - To inform about original or source of content
 - To inform about history of change
 - To inform about migration process
 - Reference
 - Identifier that links to something outside system or real world resource; such as ISBN
 - Fixity
 - To provide necessary information to access and verify digital resource, e.g. Checksum, MD5
OAIS – Open Archival Information System Reference Model

Administrator

- Negotiate Submission Agreement
 - Discuss submission agreement with producer

- Manage System Configuration
 - Configure and control changes which affect system engineering of archival system

- Physical Access Control
 - Authorize access to resources

- Establish Standards and Policies
 - Manage standards and policies in order to approve migration and replication processes

- Audit Submission
 - Verify that AIP and SIP is following specification and agreement

- Activate Requests
 - To check the request of consumer is correct, then submit the request to Access

- Customer Service
 - Provide functions to manage user account
Administrator (cont.) – Preservation Planning

- Monitor environment of OAIS and provide recommendations
- Monitor Designated Community
 - Allow consumer and producer to track change of available technologies
- Monitor Technology
 - Report change of software and hardware contributing to preservation process
- Develop Preservation Strategies and Standards
 - Develop and recommend strategies and standards for future change of technology
- Develop Packaging Designs and Migration Plans
 - Customize SIP and AIP template for migration goal
3 functions, 3 information packages, and 3 roles
Ingest

- Accept SIPs from Producers
- Verify SIPs that user submits
- Generate AIPs for archive storage

- Receive Submission
 - Upload SIP package from producer by electronic transfer such as FTP
- Quality Assurance
 - Validate transmission (e.g. checksum) error SIP package and log a result
- Generate AIP
 - Transform SIP to AIP and report result
- Coordinate Update
 - Provide a single access point (add, modify, remove, get) to storage area
Store

- Receive Data
 - Receive AIP from Ingest to permanent storage
- Manage Storage Hierarchy
 - Provide administration functions for storage media
- Replace Media
 - Support functions of migration from a media to another media
- Error Checking
 - Check and notification error from data in storage area
- Disaster Recovery
 - Provide mechanism for replicating digital content to backup
Access

- Coordinate Access Activities
 - Provide single user interface for features like browse, search and access

- Generate DIP
 - Generate DIP from AIP

- Generate DIP
 - Handle response from query and access and delivery to consumer
 - Report access activities to administrator
Summary

- **Producer**
 - Ingest package to system
 - System stores AIP in archival storage
 - System stores descriptive metadata in data management

- **Consumer**
 - Queries data via Access
 - Query from descriptive metadata from data management
 - Retrieve data via access
 - Get data from archival storage

- **Administrator**
 - Manages and monitors every process in system
Big picture of all functions and process of packages
Useful Resources

- OAIS specification
 - http://public.ccsds.org/publications/archive/650x0m2.pdf

- OAIS primer
 - http://www.dpconline.org/docs/lavoie_OAIS.pdf
PREMIS – Preservation Metadata: Implementation Strategies

PREMIS is an Information Model

- Focus is on the preservation of digital objects
- The information a repository uses to support the digital preservation process
- Things that most working preservation repositories need to know to support digital preservation functions
- Data dictionary defines a set of semantic units
Different Types of Metadata

- Descriptive
 - Supports the identification and discovery of a resource
- Administrative
 - Supports the management and tracking of a resource
- Structural
 - Defines the arrangement and composition of a resource
- Preservation
 - Supports activities intended to ensure the long term usability of a resource
What is out of Scope?

- **Descriptive Metadata**
 - Many existing standards support this

- **File Format specific metadata**
 - Metadata that pertains to only one file format or class of formats

- **Implementation metadata**
 - Metadata that describes specific policies and practices of an individual repository

- **Detailed media and hardware information**
 - Left to other communities to define
 - Technical environment metadata is in scope
PreMIS – Preservation Metadata: Implementation Strategies

Usage

- Repository Design
 - Provides guidelines on what information should be obtained and maintained by a preservation repository

- Repository evaluation
 - Provides a checklist to determine effective preservation management of digital objects

- Exchange of objects between repositories
 - Provides a common set of data elements that can be understood by the provider and consumer repositories
Always has intellectual entities

- Collection
- Sub-Collection
- Record Series
- Item

Structural metadata

Descriptive metadata

Descriptive metadata

Descriptive metadata
Data Model

Intellectual Entity
Content that can be described as a unit

Rights
Assertion of rights and permissions

Objects
Units of information in digital form

Agents
People, organizations or software

Events
Actions that involve an Object and an agent known to the system
Semantic Units

- Semantic Units
 - Convey a piece of information / knowledge
 - Do not specify how they should be represented in a particular system (e.g. to metadata elements)
 - Should be exportable to other systems
 - May have a direct mapping to metadata elements in an XML schema

- Repository evaluation
 - Provides a checklist to determine effective preservation management of digital objects

- Containers and sub units
 - Some semantic units are defined as container
 - Facilitates a hierarchical structure to the data dictionary
Objects

- Identifier
- Category (Representation, File, Bitsteam)
- Preservation level
- Characteristics: Fixity, Size (bytes), Format, Creating application
- Original name
- Environment: ..., Software, Hardware, ...
- Signature Information
- Linked events
- Linked intellectual entity
- Linked rights statement
Events

- Identifier
- Type
- Date Time
- Outcome Information
- Linking Agent Identifier
- Linking Object Identifier
Rights

- Identifier
- Copyright Information
- Licence Information
- Rights granted
- Linking Agent Identifier
- Linking Object Identifier
Agents

- Identifier
- Name
- Type
Useful Resources

- PREMIS specification
 - http://www.loc.gov/standards/premis/
- PREMIS primer
FEDORA – An Examplary Implementation of OAIS

Flexible Extensible Digital Object Repository Architecture

A system that provides a digital content repository for a wide variety of users

- E.g. institutional repository, digital archive, content management system, scholarly publishing enterprises, and digital library

Fedora as OAIS

- Is based on OAIS data model, function model and architecture models
- End client (e.g. CIRILO) can access repository functions via web services
FEDORA – Flexible Extensible Digital Object Repository Architecture
FEDORA – Engineering Figures

- Scalable, persistent storage infrastructure for content and metadata
- Webservice based (SOAP), platform independent, distributed system architecture
- Supports standardized protocols for data exchange, e.g. OAI-PMH etc.
- Extensible digital object models with associate services
- Provides dynamic transformation and multiple views of content and metadata
- Includes version management strategies for data streams
- Definition of access rights with eXtensible Access Control Markup Language
A FEDORA based repository with other embedded open source projects: OpenRDF Sesame and IIP Image Server

A multitude of web services for content dissemination (e.g. Apache Cocoon)

Handle System based resolution of persistent identifiers

A Client named CIRILO for mass ingest and data curation supporting a set of content models

Workflows and Tools for generating data

CIRILO and an „archive-in-a-box“ solution as an Austrian contribution to DARIAH

https://github.com/acdh/cirilo
FEDORA – Flexible Extensible Digital Object Repository Architecture
What is a Content Model?

- A structural definition for a "type" of object (e.g. article, book, learning object, podcast, ontology etc.)
- A pattern of datastreams (number and type)
- A pattern of datastreams and their disseminators
- A set of rules for creating a digital object
- A set of constraints on a digital object

What use are Content Models?

- **Object Typing**
 - Group identity for different kinds of objects
 - Facilitates discovery via query/search
- **Object Creation**
 - Templates for user interfaces enabling object creation
 - Drive workflows/creation of "batches" of similar objects
- **Object Validation**
 - At ingest, check that object conforms to a model
 - At modification, make sure changes don't break conformance to model
FEDORA – A Structural Model of a Content Model

- Persistent Identifier (PID)
- System Metadata
- Disseminators
- Content
FEDORA – A Structural Model of a Content Model

Persistent Identifier (PID)

System Metadata
- Dublin Core Metadata
 - objects press release
- XACML Metadata
 - define access rules
- REL-EXT Metadata
 - describe object to object relationships

Disseminators

Content

Gunter Vasold & Johannes Stigler (ZIM)
FEDORA – A Structural Model of a Content Model

Persistent Identifier (PID)

System Metadata
- Dublin Core Metadata
 - objects press release
- XACML Metadata
 - define access rules
- REL-EXT Metadata
 - describe object to object relationships

Disseminators

Content
- Datastream
- Datastream
- Datastream
Persistent Identifier (PID)

<table>
<thead>
<tr>
<th>System Metadata</th>
<th>Disseminators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dublin Core Metadata</td>
<td></td>
</tr>
<tr>
<td>objects press release</td>
<td></td>
</tr>
<tr>
<td>XACML Metadata</td>
<td></td>
</tr>
<tr>
<td>define access rules</td>
<td></td>
</tr>
<tr>
<td>REL-EXT Metadata</td>
<td></td>
</tr>
<tr>
<td>describe object to object relationships</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datastream</td>
</tr>
<tr>
<td>Datastream</td>
</tr>
<tr>
<td>Datastream</td>
</tr>
</tbody>
</table>

Pointers to service definitions to provide service-mediated views
FEDORA – An Examplary Implementation of OAIS

FEDORA – Content Models

TEI content model

- System Datastreams
 - DC – Object press release
 - STYLESHEET – XSLT Stylesheet to transform object content to HTML
 - FO_STYLESHEET – XSLT Stylesheet to transform object content to XSL:FO
 - RELS-EXT – Describe object to object relations

- Content Datastreams
 - TEI_SOURCE – TEI source
 - BIBTEX - BibTeX source
 - DC_MAPPING – TEI to DC mapping rules
 - TORDF – XSLT Stylesheet to create RDF-Triples from TEI_SOURCE
 - REPLACEMENT_RULESET – A set of regex replacement
 - THUMBNAIL - Thumbnail that represents the object in views
 - QR - OR Code image

- Disseminators
 - sdef:TEI/get
 - sdef:TEI/getPDF
 - sdef:Object/get
 - sdef:Object/getDC
 - sdef:BibTeX/get
 - sdef:BibTeX/getRIS
 - sdef:BibTeX/getENDNOTE
FEDORA – Content Models

Workflows during the creation or updating of a TEI object

- Rule based extraction of Dublin Core metadata
- Rule based extraction of semantic constructs
- Resolution of ontology concepts
- Resolution of place names against geonames.org
- Execution of TEI customization
- Creation of context objects
- Uploading of images
GAMS – An Overview of Default Content Models

- cirilo:Context – Aggregate and display ordered lists of objects
- cirilo:TEI – Encapsulate a TEI file and its semantic representation
- cirilo:dfgMETS – Store and display DFG-viewer conform METS Files
- cirilo:Ontology – Navigate through hierarchies of concepts
- cirilo:Query – Do a multicategory search
- cirilo:BibTeX – Create a bibliography in a specific style
- ...
Ingest variants provided by CIRILO

Ingest ...
- from filesystem
- from eXist databases
- from EXCEL spreadsheets
FEDORA and GAMS

Useful Resources

- FEDORA
 - http://fedora-commons.org

- GAMS
 - http://gams.uni-graz.at
 - http://rdf4j.org