
Cai Alfredson
Dick Claésson
info@litteraturbanken.se

The Swedish Literature Bank is the website
for reliable digital versions of Swedish

classics. While publishing canonical works
by Swedish authors, The Swedish Literature

Bank also focuses on neglected authors and
genres, effectively establishing a set of ‘minor

classics’ alongside the canonical works.
C.J.L. Almqvist, Selma Lagerlöf, August

Strindberg and other classics – as well as a
wealth of less renowned yet equally

interesting authors.

BL

The website is directed towards the general
public and students and teachers at every

level, as well as towards scholars. The digital
texts are based on printed first editions or

on later scholarly editions. They are carefully
proof-read, thus establishing a basis for

scholarly work. For the common reader,
introductions and essays provide fresh

perspectives on the classics.

The goal is to provide not only a site of

publication and reference but also the
advanced tools needed for new, digital

editorial projects.

BL

Swedish author Sven Lindqvist’s idea: to provide access to a library
of Swedish classics 24/7, regardless of where one may be at the
time. Instant gratification of literary need.

In 2002 a seminar was arranged by the Swedish Academy on the
possibility of establishing an electronic repository of Swedish
classics. Prof. Johan Svedjedal was asked to research the issue.

A two-year pilotproject was subsequently funded by Riksbankens
Jubileumsfond 2004–2005.

In 2006 Litteraturbanken became an ”ideell förening” – i.e.
a nonprofit organization (or NPO).

Its members: Kungl. biblioteket, Kungl. Vitterhetsakademien,
Språkbanken at Göteborg university, Svenska Akademien,
Svenska Litteratursällskapet i Finland and Svenska Vitterhetssamfundet.

 BL

1 board
1 boss (part time)
2 full time editors
3 part time editors and
proofreaders
1,5 technician(s)
 &c.

Nine major updates per year
Outreach: email, Facebook,
Twitter, bookfairs, schoolfairs,
contacting libraries &c.

Contents (as of February 2015)
1 232 works
641 authors
137 631 pages ”etext”
138 453 pages facsimiles
70 399 107 words
637 epubfiles

BL

We work together with quite a few organizations,
some of which are also members of

Litteraturbanken.se

SVENSKA VITTERHETSSAMFUNDET

THE SWEDISH ACADEMY

THE ROYAL LIBRARY

GÖTEBORG UNIVERSITY LIBRARY

SPRÅKBANKEN

DRAMAWEBBEN

SVENSKA LITTERATURSÄLLSKAPET (SE)

SVENSKA LITTERATURSÄLLSKAPET (FI)

SVENSKA FORNSKRIFTSSÄLLSKAPET

We digitize a varied selection of their publications.

BL

We operate according to a set of guidelines
outlining what to digitize first:

1.  Authors of seminal importance (focal

points of Swedish literature) – ex.
Almqvist, Benedictsson, Strindberg,
Södergran.

2.  Themed selections or selections based on
genres – ex. ”Swedish horror fiction”.

3.  Single works of literature of seminal
importance.

4.  Key translations into Swedish
of foreign works (ex.
Shakespeare’s plays in
Hagberg’s translation).

5.  Contemporary books and
essays on the literature we
digitize, as well as older works
of seminal importance.

More about this: http://litteraturbanken.se/om/ide

BL

We digitize stuff at home …

But the main bulk of our
rawmaterial is produced at
the big libraries, such as KB
(Royal Library) and others.

Treventus scanrobot at
Göteborg University Library

DIFFERENT MEDIA FORMS

  Image facsimiles – normally 5 sizes per page BL

Image facsimile

DIFFERENT MEDIA FORMS

  Image facsimiles – normally 5 sizes per page

  Searchable facsimiles – have embedded ocr
text that is typically not proofread, and
only encoded to show where on the page
the text is

  In some cases, we make searchable
facsimiles out of pdf files which contain
proofread text

BL

Searchable facsimile –
text can be copied

What the underlying xml for a searchable facsimile
looks like –only positions are marked up.

DIFFERENT MEDIA FORMS

  Image facsimiles – normally 5 sizes per page

  Searchable facsimiles – have embedded ocr
text that is typically not proofread, and
only encoded to show where on the page
the text is

  In some cases, we make searchable
facsimiles out of pdf files which contain
proofread text

  PDF files (delivered by publishers, to be
downloaded by users)

  ‘e-text’ – TEI xml transformed to html

  ePub – made from all TEI xml files where
we have the rights to do so

BL

‘e-text’, shown with parallel view of image facsimile
The idea is to give a simplified but graphically accurate
rendition of the text. Formatting, line breaks etc are kept – but
not fonts, printer’s marks etc.

TEI XML markup of the previous page. More about markup
later, this is just to show the difference between this markup
and what the searchable facsimiles look like. This is readable.

The same page as ePub viewed in Lucifox extension for Firefox.

ePub and html files for the
web are generated from this

StrindbergA-authordb.xml

Author database file

<authorid>StrindbergA</authorid>

lb262906-etext-workdb.xml

Title database file

<lbworkid>lb262906</lbworkid>
<authorid>StrindbergA</authorid>

Text
production file

Contains information

about the work for
internal use only

Images

lb262906.xml

TEI XML file

lb262906-etext.css

CSS file

Editor’s files for a TEI xml file

The files are stored in
a repository versioned

with SvnX

The information in
the database files
for each work is
used to generate an
info page like this,
with title, author,
list of errors
corrected, license
information,
provenance of the
digitized work etc.

The XML files are encoded
in TEI (P5) using a schema.
We’ve made a few additions
of our own and created the
namespace lb: for them.

The Swedish Literature Bank is
something in between a mass
digitization project such as Google
books and a research project focused
on in-depth markup of few texts.
Our main objective is to make the
texts accessible and searchable while
rendering them in a way that is very
faithful to the original. BL

We mark up for

  divs
  heads (different levels get different labels

[attributes])
  paragraphs
  line breaks and page breaks of the original
  style (italics, bold, spaced etc)
  footnotes

  Poetry is marked up in line groups and
lines

  Drama text is marked up with <sp/>,
<speaker/>, and <stage/>.

  Glossaries in scholarly texts are marked up
in detail as a gloss list with the gloss as
<label/> and the explanation as <item/>
in a fairly complex nested structure.

  Front matter receives individual markup
and extra careful styling.

BL

Sample of
drama markup

Scanning Image OCR Text

Typing

XML encoding

Sometimes
further XML

Proofreading
(on paper and back

to file)

FLOWCHART
OF
E-TEXT PRODUCTION Publishing on

the internet

Camera

Book robot

CSS
Database files

Images

Chart we use to keep
track of all our files,
who did what when?

Example of the kind of
text that may need to be
typed rather than ocr:ed

We use BBEdit for bulk
markup and Oxygen for
validation.
BBEdit makes it possible to
manipulate texts in various
ways using search-and-replace
with regular expressions, and
saving long chains of
manipulations as Text
Factories (or Text filters).
It is also possible to create
‘clippings’, a transformation
pattern that you can apply to a
string of text just by selecting
the text and using a
(customizable) command.
BBEdit can also easily do
things such as change case of
letters in a selection or whole
text and countless other
similar operations.

A very simple example of working with clippings in BBEdit

Select the number, then press whatever command you have set for the clipping in
question, and you get this:

Markup is added before and after the selection. The position of the cursor is also
set by the clipping. This clipping itself is a text file which contains only this:

The insertion point is set inside the tag to make it possible to select nothing and get
the cursor in the right place to input the page number from the keyboard.
You can create any number of clippings and assign them to keyboard commands of
your choice. Clippings may contain much longer texts than in this example.
They can also run scripts and insert results.

Page numbers are normally marked up in bulk by text factories. But let’s say we have one
that has for some reason not been marked up as a page number yet.

Example of a ’text
factory’ used to
transform text from
a .doc file to a simple
xml file.
For instance, this text factory
transforms single numbers or groups
of numbers on a line into page
numbers coded as <pb n="N"/>
It also makes lines that only consist
of capital letters to be coded as
<head/>.

Example of the same text xml encoded as the book robot
delivers it and our markup of it. Essentially we clean it up
using text a special text factory that removes the markup we
don’t need and transforms what we need to our format.

… an example of how we use Text
Factories

’The title database machine’
transforms a table of content into
a database document.

STRUCTURE OF A
SIMPLE TITLE DATABASE

FILE

Document head –
applies to the whole
work. Not a big
problem to fill out this
information.

One <part> for each part of
the work, e.g. chapters,
poems etc. This is the
problem – if there are 100
poems in a book.

End of file

<titleid> Must begin with a capital
letter, may only contain letters and
numbers.
<title> The full title.
<navtitle> Title shown in the
navigation. The only place where
numbering is to be shown.
<startpagename> Name of the page
where the part starts. Known from
the Table of contents.
<endpagename> Name of the page
where the part ends.

Simple example of a database
file and some field rules

What to input?

BL

What material do we have?

In some cases we have xml coded
tables of content.

In some cases we have ocr:ed
tables of content (with errors).

In some cases we have nothing, in
those cases we start out by typing
it in on the same form – title,
page number, line break.

The machine deals with the
different types of input.

EXEMPEL INFILER ToC in XML

ToC from OCR

TEXT FACTORIES DO THE JOB A text factory goes through a file and
performs tasks one after one. In this
case it’s mostly search-and-replace, but
other tasks can be performed as well.

This is what a text factory looks when
you’re working with it, but it’s also
possible to see and edit it as xml.

The text factory was built in five
modules which were tested
independently and then put together.
The resulting text factory takes
seconds to apply even to a long table
of content.

The first section cleans up the infile
from typical errors and transforms
scanned text into a list on the form
label-item, so that all the information
in the file is on the same form.

Any number that is last on a line is
interpreted as a page number and put
(temporarily) into the tag <item>.

When the text has gone through
section 1 it’s organized like this,
regardless of how it looked before:
<label>Chaptername</label>
<item>Page number</item>

Section 2 creates the basis for each
post. The image shows the most
important operation.
After that the page number from
<startpagename/> on each post is
copied into the <endpagename/> of
the previous post.

So, if Chapter 3 starts at p. 50, 50 will
be set as the end page of chapter 2.
Since the most common case is that
the end page is one page lower, the
value will be lowered to 49 in a
following section. (we actually have 2 versions of the
machine, one which does this, the other one does not – for books
where most parts end on the same page where the next one starts)

Section 3 takes care of <titleid/>

So far we have only copied the
entire title into the field <titleid/>,
but there are strict rules for how
that field may look, these things are
fixed in this section.

  <titleid/> may only be started by a capital
letter, nothing else.

  It may only contain numbers and letters. No
spaces or punctuation. We want words to be
written in CamelCase.

  It may not begin with a number – if it does,
we add ”Kap” (as in ‘chapter’) first. We do
this for both arabic and roman numerals.

  It should not be too long – we cut it off at 25
characters.

  If the title begins with quotation marks, a

<sortkey/> without those is required.
  If the title consists only of capital letters,

we don’t want that in listings, but we
might want it to be shown in the
navigation → creates a <navtitle/> and
change case.

  Also add a <navtitle/> for any part whose

name begins with a number. E.g. so that
chapter enumeration will be shown in the
navigation.

  … and some other similar operations.
  If the title is long, add a <shorttitle/>. Now

done like this: if the title is >30 characters,
a shorttitle with the first 25 is added.

  Add the document head and tail of the
file.

BL
Section 4 fixes the field <title/> and adds
the fields <shorttitle/>, <navtitle/>, and
<sortkey/> when necessary.

Section 5

Lowers the end page number of each part
one step.
The one weakness of BBEdit – it cannot
count. But, it’s possible to write a text
factory that lowers or raises numbers. The
same mechanism can be re-used for other
numbering purposes. The operation is so
quick once the text factory is written you
can use it over and over*.

BL
The mathematics of search-and-replace:

1.  Change the last number from 0 to

A.
2.  Lower other final numbers: 1 →0, 2
→ 1 etc. (in that order ☺)

3.  Change the final number 0A to A9
4.  Lower 1A to 9, 2A → 19, 3A →29

etc.
5.  Change the final number 0A9 →

A99
6.  Lower 1A9 → 99, 2A9 → 199 etc.

* Since text factories can be edited as xml, once you’ve created one for increasing/decreasing numbers, you
can modify it for other similar purposes with search-and-replace too.

RESULT:

INPUT AND OUTPUT
Five lines to the left give
the five parts to the right

Our user interface today …

… and what it (hopefully)
will look like at the end of
2015 …

Gränssnittet som
det ser ut idag …

Gränssnittet som
det ser ut idag …

Basic search interface (author or title)

Gränssnittet som
det ser ut idag …

Basic full-text search interface

Basic full-text search search interface Reading mode

